DismalPy
Examples
Durbin and Koopman: Box-Jenkins Examples
SARIMAX: Introduction
ARIMA Example 1: Arima
ARIMA Example 2: Arima with additive seasonal effects
ARIMA Example 3: Airline Model
ARIMA Example 4: ARMAX (Friedman)
ARIMA Postestimation: Example 1 - Dynamic Forecasting
State space modeling: Local Linear Trends
References
Detrending, Stylized Facts and the Business Cycle
Unobserved Components
Trend
Seasonal
Cycle
Irregular
Regression effects
Data
Model
Dynamic factors and coincident indices
Macroeconomic data
Dynamic factors
Model specification
Parameter estimation
Estimates
Parameters
Estimated factors
Post-estimation
Coincident Index
Appendix 1: Extending the dynamic factor model
VARMAX models
Model specification
Example 1: VAR
Example 2: VMA
Caution: VARMA(p,q) specifications
DismalPy User Guide
State Space Models
Topics
State space models
Representation in Python
Maximum Likelihood Estimation
Posterior Simulation
Out-of-the-box models
References
Examples
Durbin and Koopman: Box-Jenkins Examples
SARIMAX: Introduction
State space modeling: Local Linear Trends
Detrending, Stylized Facts and the Business Cycle
Dynamic factors and coincident indices
VARMAX models
DismalPy Reference
State Space Models
Built-in models
SARIMAX
Unobserved Components
VARMAX
Dynamic Factors
Extension starting point
MLEModel
Base classes
Representation
Kalman filter
Kalman smoother
Simulation Smoother
Model
Tools
Installation
Dependencies
Procedure
Installing from source
Release Notes
DismalPy 0.2.0 Release Notes
Highlights
DismalPy 0.1.0 Release Notes
Highlights
Dropped Support
Future Changes
Compatibility notes
New Features
Improvements
Changes
Deprecations
About DismalPy
About this documentation
Conventions
Reporting bugs
DismalPy License
Glossary
Jargon
DismalPy
Docs
»
DismalPy User Guide
»
State Space Models
View page source
State Space Models
¶
Topics
¶
State space models
Kalman Filter
Initialization
State and disturbance smoothers
Simulation smoother
Practical considerations
Additional remarks
Example models
Parameter estimation
Representation in Python
Object oriented programming
Basic representation
Representation for parameter estimation
Additional remarks
Practical considerations
Example models
Maximum Likelihood Estimation
Direct approach
Integration with Statsmodels
Example models
Posterior Simulation
Markov chain Monte Carlo algorithms
Implementing Metropolis-Hastings: the local level model
Implementing Gibbs sampling: the ARMA(1,1) model
Implementing Gibbs sampling: real business cycle model
Out-of-the-box models
SARIMAX
Unobserved components
VAR
Dynamic factors
References
Examples
¶
Durbin and Koopman: Box-Jenkins Examples
SARIMAX: Introduction
ARIMA Example 1: Arima
ARIMA Example 2: Arima with additive seasonal effects
ARIMA Example 3: Airline Model
ARIMA Example 4: ARMAX (Friedman)
ARIMA Postestimation: Example 1 - Dynamic Forecasting
State space modeling: Local Linear Trends
References
Detrending, Stylized Facts and the Business Cycle
Unobserved Components
Data
Model
Dynamic factors and coincident indices
Macroeconomic data
Dynamic factors
Model specification
Parameter estimation
Estimates
Post-estimation
Coincident Index
Appendix 1: Extending the dynamic factor model
VARMAX models
Model specification
Example 1: VAR
Example 2: VMA
Caution: VARMA(p,q) specifications