References

[1]E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999. 06283.
[2]Craig F. Ansley and Robert Kohn. A note on reparameterizing a vector autoregressive moving average model to enforce stationarity. Journal of Statistical Computation and Simulation, 24(2):99–106, June 1986. 00025. URL: http://dx.doi.org/10.1080/00949658608810893, doi:10.1080/00949658608810893.
[3]Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and Kurt Smith. Cython: The Best of Both Worlds. Computing in Science & Engineering, 13(2):31–39, March 2011. 00161. URL: http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2010.118, doi:10.1109/MCSE.2010.118.
[4]Olivier Jean Blanchard and Charles M. Kahn. The Solution of Linear Difference Models under Rational Expectations. Econometrica, 48(5):1305–1311, July 1980. 02223. URL: http://www.jstor.org/stable/1912186, doi:10.2307/1912186.
[5]C. K. Carter and R. Kohn. On Gibbs sampling for state space models. Biometrika, 81(3):541–553, September 1994. URL: http://biomet.oxfordjournals.org/content/81/3/541, doi:10.1093/biomet/81.3.541.
[6]Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4):327–335, November 1995. ArticleType: research-article / Full publication date: Nov., 1995 / Copyright © 1995 American Statistical Association. URL: http://www.jstor.org/stable/2684568, doi:10.2307/2684568.
[7]Jacques J. F. Commandeur, Siem Jan Koopman, and Marius Ooms. Statistical Software for State Space Methods. Journal of Statistical Software, 41(1):1–18, 2011. 00035. URL: http://www.jstatsoft.org/v41/i01.
[8]David N. DeJong and Chetan Dave. Structural Macroeconometrics: (Second Edition). Princeton University Press, October 2011.
[9]J. Durbin and S. J. Koopman. A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89(3):603–616, August 2002. URL: http://biomet.oxfordjournals.org/content/89/3/603, doi:10.1093/biomet/89.3.603.
[10]James Durbin and Siem Jan Koopman. Time Series Analysis by State Space Methods: Second Edition. Oxford University Press, May 2012.
[11]Mohinder Grewal and Angus Andrews. Kalman Filtering: Theory and Practice with MATLAB. Wiley-IEEE Press, Hoboken, New Jersey, 4 edition edition, December 2014. 03436.
[12]James Douglas Hamilton. Time Series Analysis. Princeton University Press, January 1994.
[13]Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific tools for Python. 2001. 00028. URL: http://www.scipy.org.
[14]Borus Jungbacker and Siem Jan Koopman. Likelihood-based dynamic factor analysis for measurement and forecasting. The Econometrics Journal, pages n/a–n/a, June 2014. 00005. URL: http://onlinelibrary.wiley.com/doi/10.1111/ectj.12029/abstract, doi:10.1111/ectj.12029.
[15]Chang-Jin Kim and Charles R. Nelson. State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications. MIT Press Books, The MIT Press, 1999. URL: http://ideas.repec.org/b/mtp/titles/0262112388.html.
[16]Paul Klein. Using the generalized Schur form to solve a multivariate linear rational expectations model. Journal of Economic Dynamics and Control, 24(10):1405–1423, September 2000. 00746. URL: http://www.sciencedirect.com/science/article/pii/S0165188999000457, doi:10.1016/S0165-1889(99)00045-7.
[17]Gary Koop. Bayesian Econometrics. Wiley-Interscience, Chichester ; Hoboken, N.J, 1 edition edition, July 2003. 00006.
[18]S. J. Koopman and J. Durbin. Fast Filtering and Smoothing for Multivariate State Space Models. Journal of Time Series Analysis, 21(3):281–296, May 2000. 00101. URL: http://onlinelibrary.wiley.com/doi/10.1111/1467-9892.00186/abstract, doi:10.1111/1467-9892.00186.
[19]S.j. Koopman and J. Durbin. Filtering and smoothing of state vector for diffuse state–space models. Journal of Time Series Analysis, 24(1):85–98, January 2003. 00089. URL: http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9184943&site=ehost-live&scope=site.
[20]Siem Jan Koopman. Disturbance Smoother for State Space Models. Biometrika, 80(1):117–126, March 1993. 00205. URL: http://www.jstor.org/stable/2336762, doi:10.2307/2336762.
[21]B. D. McCullough and H. D. Vinod. The Numerical Reliability of Econometric Software. Journal of Economic Literature, 37(2):633–665, June 1999. 00157. URL: http://www.jstor.org/stable/2565215.
[22]Roy Mendelssohn. The STAMP Software for State Space Models. Journal of Statistical Software, 41(2):1–18, 2011. 00007. URL: http://www.jstatsoft.org/v41/i02.
[23]John F. Monahan. A note on enforcing stationarity in autoregressive-moving average models. Biometrika, 71(2):403–404, August 1984. URL: http://biomet.oxfordjournals.org/content/71/2/403, doi:10.1093/biomet/71.2.403.
[24]M. Morf and T. Kailath. Square-root algorithms for least-squares estimation. IEEE Transactions on Automatic Control, 20(4):487–497, August 1975. 00215. doi:10.1109/TAC.1975.1100994.
[25]Anand Patil, David Huard, and Christopher J. Fonnesbeck. PyMC: Bayesian Stochastic Modelling in Python. Journal of Statistical Software, 35(4):1–81, 2010. 00192. URL: http://www.jstatsoft.org/v35/i04.
[26]Francisco J. Ruge-Murcia. Methods to estimate dynamic stochastic general equilibrium models. Journal of Economic Dynamics and Control, 31(8):2599–2636, August 2007. 00163. URL: http://www.sciencedirect.com/science/article/pii/S0165188906001758, doi:10.1016/j.jedc.2006.09.005.
[27]Skipper Seabold and Josef Perktold. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, 57–61. 2010. 00027. URL: http://conference.scipy.org/proceedings/scipy2010/seabold.html.
[28]Christopher A. Sims. Solving Linear Rational Expectations Models. Computational Economics, 20(1-2):1–20, October 2002. 01041. URL: http://link.springer.com/article/10.1023/A:1020517101123, doi:10.1023/A:1020517101123.
[29]Frank Smets and Rafael Wouters. Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach. The American Economic Review, 97(3):586–606, June 2007. 02620. URL: http://www.jstor.org/stable/30035013.
[30]Luke Tierney. Markov Chains for Exploring Posterior Distributions. The Annals of Statistics, 22(4):1701–1728, December 1994. 03496. URL: http://www.jstor.org/stable/2242477.
[31]Peter Wegner. Concepts and Paradigms of Object-oriented Programming. SIGPLAN OOPS Mess., 1(1):7–87, August 1990. 00612. URL: http://doi.acm.org/10.1145/382192.383004, doi:10.1145/382192.383004.
[32]Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models. Springer, New York, 2nd edition edition, March 1999. 00000.