Source code for dismalpy.ssm.dynamic_factor

"""
Dynamic Factor Model

Author: Chad Fulton
License: Simplified-BSD
"""
from __future__ import division, absolute_import, print_function

import numpy as np
from .mlemodel import MLEMixin, MLEResultsMixin
try:
    raise ImportError
    from statsmodels.tsa.statespace import mlemodel, dynamic_factor
except ImportError:
    from .compat import mlemodel, dynamic_factor
import statsmodels.base.wrapper as wrap

[docs]class DynamicFactor(MLEMixin, dynamic_factor.DynamicFactor): r""" Dynamic factor model Parameters ---------- endog : array_like The observed time-series process :math:`y` exog : array_like, optional Array of exogenous regressors for the observation equation, shaped nobs x k_exog. k_factors : int The number of unobserved factors. factor_order : int The order of the vector autoregression followed by the factors. error_cov_type : {'scalar', 'diagonal', 'unstructured'}, optional The structure of the covariance matrix of the observation error term, where "unstructured" puts no restrictions on the matrix, "diagonal" requires it to be any diagonal matrix (uncorrelated errors), and "scalar" requires it to be a scalar times the identity matrix. Default is "diagonal". error_order : int, optional The order of the vector autoregression followed by the observation error component. Default is None, corresponding to white noise errors. error_var : boolean, optional Whether or not to model the errors jointly via a vector autoregression, rather than as individual autoregressions. Has no effect unless `error_order` is set. Default is False. enforce_stationarity : boolean, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. **kwargs Keyword arguments may be used to provide default values for state space matrices or for Kalman filtering options. See `Representation`, and `KalmanFilter` for more details. Attributes ---------- exog : array_like, optional Array of exogenous regressors for the observation equation, shaped nobs x k_exog. k_factors : int The number of unobserved factors. factor_order : int The order of the vector autoregression followed by the factors. error_cov_type : {'diagonal', 'unstructured'} The structure of the covariance matrix of the error term, where "unstructured" puts no restrictions on the matrix and "diagonal" requires it to be a diagonal matrix (uncorrelated errors). error_order : int The order of the vector autoregression followed by the observation error component. error_var : boolean Whether or not to model the errors jointly via a vector autoregression, rather than as individual autoregressions. Has no effect unless `error_order` is set. enforce_stationarity : boolean, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. Notes ----- The dynamic factor model considered here is in the so-called static form, and is specified: .. math:: y_t & = \Lambda f_t + B x_t + u_t \\ f_t & = A_1 f_{t-1} + \dots + A_p f_{t-p} + \eta_t \\ u_t & = C_1 u_{t-1} + \dots + C_1 f_{t-q} + \varepsilon_t where there are `k_endog` observed series and `k_factors` unobserved factors. Thus :math:`y_t` is a `k_endog` x 1 vector and :math:`f_t` is a `k_factors` x 1 vector. :math:`x_t` are optional exogenous vectors, shaped `k_exog` x 1. :math:`\eta_t` and :math:`\varepsilon_t` are white noise error terms. In order to identify the factors, :math:`Var(\eta_t) = I`. Denote :math:`Var(\varepsilon_t) \equiv \Sigma`. Options related to the unobserved factors: - `k_factors`: this is the dimension of the vector :math:`f_t`, above. To exclude factors completely, set `k_factors = 0`. - `factor_order`: this is the number of lags to include in the factor evolution equation, and corresponds to :math:`p`, above. To have static factors, set `factor_order = 0`. Options related to the observation error term :math:`u_t`: - `error_order`: the number of lags to include in the error evolution equation; corresponds to :math:`q`, above. To have white noise errors, set `error_order = 0` (this is the default). - `error_cov_type`: this controls the form of the covariance matrix :math:`\Sigma`. If it is "dscalar", then :math:`\Sigma = \sigma^2 I`. If it is "diagonal", then :math:`\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_n^2)`. If it is "unstructured", then :math:`\Sigma` is any valid variance / covariance matrix (i.e. symmetric and positive definite). - `error_var`: this controls whether or not the errors evolve jointly according to a VAR(q), or individually according to separate AR(q) processes. In terms of the formulation above, if `error_var = False`, then the matrices :math:C_i` are diagonal, otherwise they are general VAR matrices. See Also -------- dismalpy.ssm.mlemodel.MLEModel dismalpy.ssm.kalman_smoother.KalmanSmoother dismalpy.ssm.kalman_filter.KalmanFilter dismalpy.ssm.representation.Representation References ---------- .. [1] Lutkepohl, Helmut. 2007. New Introduction to Multiple Time Series Analysis. Berlin: Springer. """ def filter(self, params, transformed=True, cov_type=None, return_ssm=False, **kwargs): params = np.array(params, ndmin=1) # Transform parameters if necessary if not transformed: params = self.transform_params(params) transformed = True # Get the state space output results = super(DynamicFactor, self).filter( params, transformed, cov_type, return_ssm=True, **kwargs) # Wrap in a results object if not return_ssm: result_kwargs = {} if cov_type is not None: result_kwargs['cov_type'] = cov_type results = DynamicFactorResultsWrapper( DynamicFactorResults(self, params, results, **result_kwargs) ) return results filter.__doc__ = MLEMixin.filter.__doc__ def smooth(self, params, transformed=True, cov_type=None, return_ssm=False, **kwargs): params = np.array(params, ndmin=1) if not transformed: params = self.transform_params(params) transformed = True # Get the state space output results = super(DynamicFactor, self).smooth( params, transformed, cov_type, return_ssm=True, **kwargs) # Wrap in a results object if not return_ssm: result_kwargs = {} if cov_type is not None: result_kwargs['cov_type'] = cov_type results = DynamicFactorResultsWrapper( DynamicFactorResults(self, params, results, **result_kwargs) ) return results smooth.__doc__ = MLEMixin.smooth.__doc__
[docs]class DynamicFactorResults(MLEResultsMixin, dynamic_factor.DynamicFactorResults): """ Class to hold results from fitting an DynamicFactor model. Parameters ---------- model : DynamicFactor instance The fitted model instance Attributes ---------- specification : dictionary Dictionary including all attributes from the DynamicFactor model instance. coefficient_matrices_var : array Array containing autoregressive lag polynomial coefficient matrices, ordered from lowest degree to highest. See Also -------- dismalpy.ssm.mlemodel.MLEResults dismalpy.ssm.kalman_smoother.SmootherResults dismalpy.ssm.kalman_filter.FilterResults dismalpy.ssm.representation.FrozenRepresentation """ pass
class DynamicFactorResultsWrapper(mlemodel.MLEResultsWrapper): _attrs = {} _wrap_attrs = wrap.union_dicts( mlemodel.MLEResultsWrapper._wrap_attrs, _attrs) _methods = {} _wrap_methods = wrap.union_dicts( mlemodel.MLEResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(DynamicFactorResultsWrapper, DynamicFactorResults)