"""
Statespace Tools
Author: Chad Fulton
License: Simplified-BSD
"""
from __future__ import division, absolute_import, print_function
import numpy as np
import pandas as pd
from statsmodels.tools.data import _is_using_pandas
from . import (
_statespace, _kalman_filter, _kalman_smoother, _simulation_smoother, _tools
)
has_find_best_blas_type = True
try:
from scipy.linalg.blas import find_best_blas_type
except ImportError: # pragma: no cover
has_find_best_blas_type = False
# Shim for SciPy 0.11, derived from tag=0.11 scipy.linalg.blas
_type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z', 'G': 'z'}
def find_best_blas_type(arrays):
dtype, index = max(
[(ar.dtype, i) for i, ar in enumerate(arrays)])
prefix = _type_conv.get(dtype.char, 'd')
return prefix, dtype, None
has_trmm = True
try:
from scipy.linalg.blas import dtrmm
except ImportError:
has_trmm = False
prefix_dtype_map = {
's': np.float32, 'd': np.float64, 'c': np.complex64, 'z': np.complex128
}
prefix_statespace_map = {
's': _statespace.sStatespace, 'd': _statespace.dStatespace,
'c': _statespace.cStatespace, 'z': _statespace.zStatespace
}
prefix_kalman_filter_map = {
's': _kalman_filter.sKalmanFilter, 'd': _kalman_filter.dKalmanFilter,
'c': _kalman_filter.cKalmanFilter, 'z': _kalman_filter.zKalmanFilter
}
prefix_kalman_smoother_map = {
's': _kalman_smoother.sKalmanSmoother,
'd': _kalman_smoother.dKalmanSmoother,
'c': _kalman_smoother.cKalmanSmoother,
'z': _kalman_smoother.zKalmanSmoother
}
prefix_simulation_smoother_map = {
's': _simulation_smoother.sSimulationSmoother,
'd': _simulation_smoother.dSimulationSmoother,
'c': _simulation_smoother.cSimulationSmoother,
'z': _simulation_smoother.zSimulationSmoother
}
if has_trmm:
prefix_pacf_map = {
's': _tools._scompute_coefficients_from_multivariate_pacf,
'd': _tools._dcompute_coefficients_from_multivariate_pacf,
'c': _tools._ccompute_coefficients_from_multivariate_pacf,
'z': _tools._zcompute_coefficients_from_multivariate_pacf
}
prefix_sv_map = {
's': _tools._sconstrain_sv_less_than_one,
'd': _tools._dconstrain_sv_less_than_one,
'c': _tools._cconstrain_sv_less_than_one,
'z': _tools._zconstrain_sv_less_than_one
}
[docs]def companion_matrix(polynomial):
r"""
Create a companion matrix
Parameters
----------
polynomial : array_like or list
If an iterable, interpreted as the coefficients of the polynomial from
which to form the companion matrix. Polynomial coefficients are in
order of increasing degree, and may be either scalars (as in an AR(p)
model) or coefficient matrices (as in a VAR(p) model). If an integer,
it is interpereted as the size of a companion matrix of a scalar
polynomial, where the polynomial coefficients are initialized to zeros.
If a matrix polynomial is passed, :math:`C_0` may be set to the scalar
value 1 to indicate an identity matrix (doing so will improve the speed
of the companion matrix creation).
Returns
-------
companion_matrix : array
Notes
-----
Given coefficients of a lag polynomial of the form:
.. math::
c(L) = c_0 + c_1 L + \dots + c_p L^p
returns a matrix of the form
.. math::
\begin{bmatrix}
\phi_1 & 1 & 0 & \cdots & 0 \\
\phi_2 & 0 & 1 & & 0 \\
\vdots & & & \ddots & 0 \\
& & & & 1 \\
\phi_n & 0 & 0 & \cdots & 0 \\
\end{bmatrix}
where some or all of the :math:`\phi_i` may be non-zero (if `polynomial` is
None, then all are equal to zero).
If the coefficients provided are scalars :math:`(c_0, c_1, \dots, c_p)`,
then the companion matrix is an :math:`n \times n` matrix formed with the
elements in the first column defined as
:math:`\phi_i = -\frac{c_i}{c_0}, i \in 1, \dots, p`.
If the coefficients provided are matrices :math:`(C_0, C_1, \dots, C_p)`,
each of shape :math:`(m, m)`, then the companion matrix is an
:math:`nm \times nm` matrix formed with the elements in the first column
defined as :math:`\phi_i = -C_0^{-1} C_i', i \in 1, \dots, p`.
It is important to understand the expected signs of the coefficients. A
typical AR(p) model is written as:
.. math::
y_t = a_1 y_{t-1} + \dots + a_p y_{t-p} + \varepsilon_t
This can be rewritten as:
.. math::
(1 - a_1 L - \dots - a_p L^p )y_t = \varepsilon_t \\
(1 + c_1 L + \dots + c_p L^p )y_t = \varepsilon_t \\
c(L) y_t = \varepsilon_t
The coefficients from this form are defined to be :math:`c_i = - a_i`, and
it is the :math:`c_i` coefficients that this function expects to be
provided.
"""
identity_matrix = False
if isinstance(polynomial, int):
n = polynomial
m = 1
polynomial = None
else:
n = len(polynomial) - 1
if n < 1:
raise ValueError("Companion matrix polynomials must include at"
" least two terms.")
if isinstance(polynomial, list) or isinstance(polynomial, tuple):
try:
# Note: can't use polynomial[0] because of the special behavior
# associated with matrix polynomials and the constant 1, see
# below.
m = len(polynomial[1])
except TypeError:
m = 1
# Check if we just have a scalar polynomial
if m == 1:
polynomial = np.asanyarray(polynomial)
# Check if 1 was passed as the first argument (indicating an
# identity matrix)
elif polynomial[0] == 1:
polynomial[0] = np.eye(m)
identity_matrix = True
else:
m = 1
polynomial = np.asanyarray(polynomial)
matrix = np.zeros((n * m, n * m))
idx = np.diag_indices((n - 1) * m)
idx = (idx[0], idx[1] + m)
matrix[idx] = 1
if polynomial is not None and n > 0:
if m == 1:
matrix[:, 0] = -polynomial[1:] / polynomial[0]
elif identity_matrix:
for i in range(n):
matrix[i * m:(i + 1) * m, :m] = -polynomial[i+1].T
else:
inv = np.linalg.inv(polynomial[0])
for i in range(n):
matrix[i * m:(i + 1) * m, :m] = -np.dot(inv, polynomial[i+1]).T
return matrix
[docs]def diff(series, k_diff=1, k_seasonal_diff=None, k_seasons=1):
r"""
Difference a series simply and/or seasonally along the zero-th axis.
Given a series (denoted :math:`y_t`), performs the differencing operation
.. math::
\Delta^d \Delta_s^D y_t
where :math:`d =` `diff`, :math:`s =` `k_seasons`,
:math:`D =` `seasonal\_diff`, and :math:`\Delta` is the difference
operator.
Parameters
----------
series : array_like
The series to be differenced.
diff : int, optional
The number of simple differences to perform. Default is 1.
seasonal_diff : int or None, optional
The number of seasonal differences to perform. Default is no seasonal
differencing.
k_seasons : int, optional
The seasonal lag. Default is 1. Unused if there is no seasonal
differencing.
Returns
-------
differenced : array
The differenced array.
"""
pandas = _is_using_pandas(series, None)
differenced = np.asanyarray(series) if not pandas else series
# Seasonal differencing
if k_seasonal_diff is not None:
while k_seasonal_diff > 0:
if not pandas:
differenced = (
differenced[k_seasons:] - differenced[:-k_seasons]
)
else:
differenced = differenced.diff(k_seasons)[k_seasons:]
k_seasonal_diff -= 1
# Simple differencing
if not pandas:
differenced = np.diff(differenced, k_diff, axis=0)
else:
while k_diff > 0:
differenced = differenced.diff()[1:]
k_diff -= 1
return differenced
def concat(series, axis=0, allow_mix=False):
"""
Concatenate a set of series.
Parameters
----------
series : iterable
An iterable of series to be concatenated
axis : int, optional
The axis along which to concatenate. Default is 1 (columns).
allow_mix : bool
Whether or not to allow a mix of pandas and non-pandas objects. Default
is False. If true, the returned object is an ndarray, and additional
pandas metadata (e.g. column names, indices, etc) is lost.
Returns
-------
concatenated : array or pd.DataFrame
The concatenated array. Will be a DataFrame if series are pandas
objects.
"""
is_pandas = np.r_[[_is_using_pandas(s, None) for s in series]]
if np.all(is_pandas):
concatenated = pd.concat(series, axis=axis)
elif np.all(~is_pandas) or allow_mix:
concatenated = np.concatenate(series, axis=axis)
else:
raise ValueError('Attempted to concatenate Pandas objects with'
' non-Pandas objects with `allow_mix=False`.')
return concatenated
[docs]def is_invertible(polynomial, threshold=1.):
r"""
Determine if a polynomial is invertible.
Requires all roots of the polynomial lie inside the unit circle.
Parameters
----------
polynomial : array_like or tuple, list
Coefficients of a polynomial, in order of increasing degree.
For example, `polynomial=[1, -0.5]` corresponds to the polynomial
:math:`1 - 0.5x` which has root :math:`2`. If it is a matrix
polynomial (in which case the coefficients are coefficient matrices),
a tuple or list of matrices should be passed.
threshold : number
Allowed threshold for `is_invertible` to return True. Default is 1.
Notes
-----
If the coefficients provided are scalars :math:`(c_0, c_1, \dots, c_n)`,
then the corresponding polynomial is :math:`c_0 + c_1 L + \dots + c_n L^n`.
If the coefficients provided are matrices :math:`(C_0, C_1, \dots, C_n)`,
then the corresponding polynomial is :math:`C_0 + C_1 L + \dots + C_n L^n`.
There are three equivalent methods of determining if the polynomial
represented by the coefficients is invertible:
The first method factorizes the polynomial into:
.. math::
C(L) & = c_0 + c_1 L + \dots + c_n L^n \\
& = constant (1 - \lambda_1 L)
(1 - \lambda_2 L) \dots (1 - \lambda_n L)
In order for :math:`C(L)` to be invertible, it must be that each factor
:math:`(1 - \lambda_i L)` is invertible; the condition is then that
:math:`|\lambda_i| < 1`, where :math:`\lambda_i` is a root of the
polynomial.
The second method factorizes the polynomial into:
.. math::
C(L) & = c_0 + c_1 L + \dots + c_n L^n \\
& = constant (L - \zeta_1) (L - \zeta_2) \dots (L - \zeta_3)
The condition is now :math:`|\zeta_i| > 1`, where :math:`\zeta_i` is a root
of the polynomial with reversed coefficients and
:math:`\lambda_i = \frac{1}{\zeta_i}`.
Finally, a companion matrix can be formed using the coefficients of the
polynomial. Then the eigenvalues of that matrix give the roots of the
polynomial. This last method is the one actually used.
See Also
--------
dismalpy.ssm.tools.companion_matrix
Examples
--------
>>> dp.ssm.is_invertible([0.5])
True
>>> dp.ssm.is_invertible([1])
False
"""
# First method:
# np.all(np.abs(np.roots(np.r_[1, params])) < 1)
# Second method:
# np.all(np.abs(np.roots(np.r_[1, params][::-1])) > 1)
# Final method:
eigvals = np.linalg.eigvals(companion_matrix(polynomial))
return np.all(np.abs(eigvals) < threshold)
[docs]def constrain_stationary_univariate(unconstrained):
"""
Transform unconstrained parameters used by the optimizer to constrained
parameters used in likelihood evaluation
Parameters
----------
unconstrained : array
Unconstrained parameters used by the optimizer, to be transformed to
stationary coefficients of, e.g., an autoregressive or moving average
component.
Returns
-------
constrained : array
Constrained parameters of, e.g., an autoregressive or moving average
component, to be transformed to arbitrary parameters used by the
optimizer.
References
----------
.. [1] Monahan, John F. 1984.
"A Note on Enforcing Stationarity in
Autoregressive-moving Average Models."
Biometrika 71 (2) (August 1): 403-404.
"""
n = unconstrained.shape[0]
y = np.zeros((n, n), dtype=unconstrained.dtype)
r = unconstrained/((1 + unconstrained**2)**0.5)
for k in range(n):
for i in range(k):
y[k, i] = y[k - 1, i] + r[k] * y[k - 1, k - i - 1]
y[k, k] = r[k]
return -y[n - 1, :]
[docs]def unconstrain_stationary_univariate(constrained):
"""
Transform constrained parameters used in likelihood evaluation
to unconstrained parameters used by the optimizer
Parameters
----------
constrained : array
Constrained parameters of, e.g., an autoregressive or moving average
component, to be transformed to arbitrary parameters used by the
optimizer.
Returns
-------
unconstrained : array
Unconstrained parameters used by the optimizer, to be transformed to
stationary coefficients of, e.g., an autoregressive or moving average
component.
References
----------
.. [1] Monahan, John F. 1984.
"A Note on Enforcing Stationarity in
Autoregressive-moving Average Models."
Biometrika 71 (2) (August 1): 403-404.
"""
n = constrained.shape[0]
y = np.zeros((n, n), dtype=constrained.dtype)
y[n-1:] = -constrained
for k in range(n-1, 0, -1):
for i in range(k):
y[k-1, i] = (y[k, i] - y[k, k]*y[k, k-i-1]) / (1 - y[k, k]**2)
r = y.diagonal()
x = r / ((1 - r**2)**0.5)
return x
def _constrain_sv_less_than_one_python(unconstrained, order=None,
k_endog=None):
"""
Transform arbitrary matrices to matrices with singular values less than
one.
Parameters
----------
unconstrained : list
Arbitrary matrices. Should be a list of length `order`, where each
element is an array sized `k_endog` x `k_endog`.
order : integer, optional
The order of the autoregression.
k_endog : integer, optional
The dimension of the data vector.
Returns
-------
constrained : list
Partial autocorrelation matrices. Should be a list of length
`order`, where each element is an array sized `k_endog` x `k_endog`.
Notes
-----
Corresponds to Lemma 2.2 in Ansley and Kohn (1986). See
`constrain_stationary_multivariate` for more details.
There is a Cython implementation of this function that can be much faster,
but which requires SciPy 0.14.0 or greater. See
`constrain_stationary_multivariate` for details.
"""
from scipy import linalg
constrained = [] # P_s, s = 1, ..., p
if order is None:
order = len(unconstrained)
if k_endog is None:
k_endog = unconstrained[0].shape[0]
eye = np.eye(k_endog)
for i in range(order):
A = unconstrained[i]
B, lower = linalg.cho_factor(eye + np.dot(A, A.T), lower=True)
constrained.append(linalg.solve_triangular(B, A, lower=lower))
return constrained
def _compute_coefficients_from_multivariate_pacf_python(
partial_autocorrelations, error_variance, transform_variance=False,
order=None, k_endog=None):
"""
Transform matrices with singular values less than one to matrices
corresponding to a stationary (or invertible) process.
Parameters
----------
partial_autocorrelations : list
Partial autocorrelation matrices. Should be a list of length `order`,
where each element is an array sized `k_endog` x `k_endog`.
error_variance : array
The variance / covariance matrix of the error term. Should be sized
`k_endog` x `k_endog`. This is used as input in the algorithm even if
is not transformed by it (when `transform_variance` is False). The
error term variance is required input when transformation is used
either to force an autoregressive component to be stationary or to
force a moving average component to be invertible.
transform_variance : boolean, optional
Whether or not to transform the error variance term. This option is
not typically used, and the default is False.
order : integer, optional
The order of the autoregression.
k_endog : integer, optional
The dimension of the data vector.
Returns
-------
coefficient_matrices : list
Transformed coefficient matrices leading to a stationary VAR
representation.
Notes
-----
Corresponds to Lemma 2.1 in Ansley and Kohn (1986). See
`constrain_stationary_multivariate` for more details.
There is a Cython implementation of this function that can be much faster,
but which requires SciPy 0.14.0 or greater. See
`constrain_stationary_multivariate` for details.
"""
from scipy import linalg
if order is None:
order = len(partial_autocorrelations)
if k_endog is None:
k_endog = partial_autocorrelations[0].shape[0]
# If we want to keep the provided variance but with the constrained
# coefficient matrices, we need to make a copy here, and then after the
# main loop we will transform the coefficients to match the passed variance
if not transform_variance:
initial_variance = error_variance
# Need to make the input variance large enough that the recursions
# don't lead to zero-matrices due to roundoff error, which would case
# exceptions from the Cholesky decompositions.
# Note that this will still not always ensure positive definiteness,
# and for k_endog, order large enough an exception may still be raised
error_variance = np.eye(k_endog) * (order + k_endog)**10
forward_variances = [error_variance] # \Sigma_s
backward_variances = [error_variance] # \Sigma_s^*, s = 0, ..., p
autocovariances = [error_variance] # \Gamma_s
# \phi_{s,k}, s = 1, ..., p
# k = 1, ..., s+1
forwards = []
# \phi_{s,k}^*
backwards = []
error_variance_factor = linalg.cholesky(error_variance, lower=True)
forward_factors = [error_variance_factor]
backward_factors = [error_variance_factor]
# We fill in the entries as follows:
# [1,1]
# [2,2], [2,1]
# [3,3], [3,1], [3,2]
# ...
# [p,p], [p,1], ..., [p,p-1]
# the last row, correctly ordered, is then used as the coefficients
for s in range(order): # s = 0, ..., p-1
prev_forwards = forwards
prev_backwards = backwards
forwards = []
backwards = []
# Create the "last" (k = s+1) matrix
# Note: this is for k = s+1. However, below we then have to fill
# in for k = 1, ..., s in order.
# P L*^{-1} = x
# x L* = P
# L*' x' = P'
forwards.append(
linalg.solve_triangular(
backward_factors[s], partial_autocorrelations[s].T,
lower=True, trans='T'))
forwards[0] = np.dot(forward_factors[s], forwards[0].T)
# P' L^{-1} = x
# x L = P'
# L' x' = P
backwards.append(
linalg.solve_triangular(
forward_factors[s], partial_autocorrelations[s],
lower=True, trans='T'))
backwards[0] = np.dot(backward_factors[s], backwards[0].T)
# Update the variance
# Note: if s >= 1, this will be further updated in the for loop
# below
# Also, this calculation will be re-used in the forward variance
tmp = np.dot(forwards[0], backward_variances[s])
autocovariances.append(tmp.copy().T)
# Create the remaining k = 1, ..., s matrices,
# only has an effect if s >= 1
for k in range(s):
forwards.insert(k, prev_forwards[k] - np.dot(
forwards[-1], prev_backwards[s-(k+1)]))
backwards.insert(k, prev_backwards[k] - np.dot(
backwards[-1], prev_forwards[s-(k+1)]))
autocovariances[s+1] += np.dot(autocovariances[k+1],
prev_forwards[s-(k+1)].T)
# Create forward and backwards variances
forward_variances.append(
forward_variances[s] - np.dot(tmp, forwards[s].T)
)
backward_variances.append(
backward_variances[s] -
np.dot(
np.dot(backwards[s], forward_variances[s]),
backwards[s].T
)
)
# Cholesky factors
forward_factors.append(
linalg.cholesky(forward_variances[s+1], lower=True)
)
backward_factors.append(
linalg.cholesky(backward_variances[s+1], lower=True)
)
# If we do not want to use the transformed variance, we need to
# adjust the constrained matrices, as presented in Lemma 2.3, see above
variance = forward_variances[-1]
if not transform_variance:
# Here, we need to construct T such that:
# variance = T * initial_variance * T'
# To do that, consider the Cholesky of variance (L) and
# input_variance (M) to get:
# L L' = T M M' T' = (TM) (TM)'
# => L = T M
# => L M^{-1} = T
initial_variance_factor = np.linalg.cholesky(initial_variance)
transformed_variance_factor = np.linalg.cholesky(variance)
transform = np.dot(initial_variance_factor,
np.linalg.inv(transformed_variance_factor))
inv_transform = np.linalg.inv(transform)
for i in range(order):
forwards[i] = (
np.dot(np.dot(transform, forwards[i]), inv_transform)
)
return forwards, variance
def constrain_stationary_multivariate_python(unconstrained, error_variance,
transform_variance=False,
prefix=None):
r"""
Transform unconstrained parameters used by the optimizer to constrained
parameters used in likelihood evaluation for a vector autoregression.
Parameters
----------
unconstrained : array or list
Arbitrary matrices to be transformed to stationary coefficient matrices
of the VAR. If a list, should be a list of length `order`, where each
element is an array sized `k_endog` x `k_endog`. If an array, should be
the matrices horizontally concatenated and sized
`k_endog` x `k_endog * order`.
error_variance : array
The variance / covariance matrix of the error term. Should be sized
`k_endog` x `k_endog`. This is used as input in the algorithm even if
is not transformed by it (when `transform_variance` is False). The
error term variance is required input when transformation is used
either to force an autoregressive component to be stationary or to
force a moving average component to be invertible.
transform_variance : boolean, optional
Whether or not to transform the error variance term. This option is
not typically used, and the default is False.
prefix : {'s','d','c','z'}, optional
The appropriate BLAS prefix to use for the passed datatypes. Only
use if absolutely sure that the prefix is correct or an error will
result.
Returns
-------
constrained : array or list
Transformed coefficient matrices leading to a stationary VAR
representation. Will match the type of the passed `unconstrained`
variable (so if a list was passed, a list will be returned).
Notes
-----
In the notation of [1]_, the arguments `(variance, unconstrained)` are
written as :math:`(\Sigma, A_1, \dots, A_p)`, where :math:`p` is the order
of the vector autoregression, and is here determined by the length of
the `unconstrained` argument.
There are two steps in the constraining algorithm.
First, :math:`(A_1, \dots, A_p)` are transformed into
:math:`(P_1, \dots, P_p)` via Lemma 2.2 of [1]_.
Second, :math:`(\Sigma, P_1, \dots, P_p)` are transformed into
:math:`(\Sigma, \phi_1, \dots, \phi_p)` via Lemmas 2.1 and 2.3 of [1]_.
If `transform_variance=True`, then only Lemma 2.1 is applied in the second
step.
While this function can be used even in the univariate case, it is much
slower, so in that case `constrain_stationary_univariate` is preferred.
References
----------
.. [1] Ansley, Craig F., and Robert Kohn. 1986.
"A Note on Reparameterizing a Vector Autoregressive Moving Average Model
to Enforce Stationarity."
Journal of Statistical Computation and Simulation 24 (2): 99-106.
.. [2] Ansley, Craig F, and Paul Newbold. 1979.
"Multivariate Partial Autocorrelations."
In Proceedings of the Business and Economic Statistics Section, 349-53.
American Statistical Association
"""
use_list = type(unconstrained) == list
if not use_list:
k_endog, order = unconstrained.shape
order //= k_endog
unconstrained = [
unconstrained[:k_endog, i*k_endog:(i+1)*k_endog]
for i in range(order)
]
order = len(unconstrained)
k_endog = unconstrained[0].shape[0]
# Step 1: convert from arbitrary matrices to those with singular values
# less than one.
sv_constrained = _constrain_sv_less_than_one_python(
unconstrained, order, k_endog)
# Step 2: convert matrices from our "partial autocorrelation matrix" space
# (matrices with singular values less than one) to the space of stationary
# coefficient matrices
constrained, var = _compute_coefficients_from_multivariate_pacf_python(
sv_constrained, error_variance, transform_variance, order, k_endog)
if not use_list:
constrained = np.concatenate(constrained, axis=1).reshape(
k_endog, k_endog * order)
return constrained, var
# Conditionally use the Cython versions of the multivariate constraint if
# possible (i.e. if Scipy >= 0.14.0 is available.)
if has_trmm:
[docs] def constrain_stationary_multivariate(unconstrained, variance,
transform_variance=False,
prefix=None):
use_list = type(unconstrained) == list
if use_list:
unconstrained = np.concatenate(unconstrained, axis=1)
k_endog, order = unconstrained.shape
order //= k_endog
if order < 1:
raise ValueError('Must have order at least 1')
if k_endog < 1:
raise ValueError('Must have at least 1 endogenous variable')
if prefix is None:
prefix, dtype, _ = find_best_blas_type(
[unconstrained, variance])
dtype = prefix_dtype_map[prefix]
unconstrained = np.asfortranarray(unconstrained, dtype=dtype)
variance = np.asfortranarray(variance, dtype=dtype)
# Step 1: convert from arbitrary matrices to those with singular values
# less than one.
# sv_constrained = _constrain_sv_less_than_one(unconstrained, order,
# k_endog, prefix)
sv_constrained = prefix_sv_map[prefix](unconstrained, order, k_endog)
# Step 2: convert matrices from our "partial autocorrelation matrix"
# space (matrices with singular values less than one) to the space of
# stationary coefficient matrices
constrained, variance = prefix_pacf_map[prefix](
sv_constrained, variance, transform_variance, order, k_endog)
constrained = np.array(constrained, dtype=dtype)
variance = np.array(variance, dtype=dtype)
if use_list:
constrained = [
constrained[:k_endog, i*k_endog:(i+1)*k_endog]
for i in range(order)
]
return constrained, variance
constrain_stationary_multivariate.__doc__ = (
constrain_stationary_multivariate_python.__doc__)
else:
constrain_stationary_multivariate = (
constrain_stationary_multivariate_python)
def _unconstrain_sv_less_than_one(constrained, order=None, k_endog=None):
"""
Transform matrices with singular values less than one to arbitrary
matrices.
Parameters
----------
constrained : list
The partial autocorrelation matrices. Should be a list of length
`order`, where each element is an array sized `k_endog` x `k_endog`.
order : integer, optional
The order of the autoregression.
k_endog : integer, optional
The dimension of the data vector.
Returns
-------
unconstrained : list
Unconstrained matrices. A list of length `order`, where each element is
an array sized `k_endog` x `k_endog`.
Notes
-----
Corresponds to the inverse of Lemma 2.2 in Ansley and Kohn (1986). See
`unconstrain_stationary_multivariate` for more details.
"""
from scipy import linalg
unconstrained = [] # A_s, s = 1, ..., p
if order is None:
order = len(constrained)
if k_endog is None:
k_endog = constrained[0].shape[0]
eye = np.eye(k_endog)
for i in range(order):
P = constrained[i]
# B^{-1} B^{-1}' = I - P P'
B_inv, lower = linalg.cho_factor(eye - np.dot(P, P.T), lower=True)
# A = BP
# B^{-1} A = P
unconstrained.append(linalg.solve_triangular(B_inv, P, lower=lower))
return unconstrained
def _compute_multivariate_sample_acovf(endog, maxlag):
r"""
Computer multivariate sample autocovariances
Parameters
----------
endog : array_like
Sample data on which to compute sample autocovariances. Shaped
`nobs` x `k_endog`.
Returns
-------
sample_autocovariances : list
A list of the first `maxlag` sample autocovariance matrices. Each
matrix is shaped `k_endog` x `k_endog`.
Notes
-----
This function computes the forward sample autocovariances:
.. math::
\hat \Gamma(s) = \frac{1}{n} \sum_{t=1}^{n-s}
(Z_t - \bar Z) (Z_{t+s} - \bar Z)'
See page 353 of Wei (1990). This function is primarily implemented for
checking the partial autocorrelation functions below, and so is quite slow.
References
----------
.. [1] Wei, William. 1990.
Time Series Analysis : Univariate and Multivariate Methods.
Boston: Pearson.
"""
# Get the (demeaned) data as an array
endog = np.array(endog)
if endog.ndim == 1:
endog = endog[:, np.newaxis]
endog -= np.mean(endog, axis=0)
# Dimensions
nobs, k_endog = endog.shape
sample_autocovariances = []
for s in range(maxlag + 1):
sample_autocovariances.append(np.zeros((k_endog, k_endog)))
for t in range(nobs - s):
sample_autocovariances[s] += np.outer(endog[t], endog[t+s])
sample_autocovariances[s] /= nobs
return sample_autocovariances
def _compute_multivariate_acovf_from_coefficients(
coefficients, error_variance, maxlag=None,
forward_autocovariances=False):
r"""
Compute multivariate autocovariances from vector autoregression coefficient
matrices
Parameters
----------
coefficients : array or list
The coefficients matrices. If a list, should be a list of length
`order`, where each element is an array sized `k_endog` x `k_endog`. If
an array, should be the coefficient matrices horizontally concatenated
and sized `k_endog` x `k_endog * order`.
error_variance : array
The variance / covariance matrix of the error term. Should be sized
`k_endog` x `k_endog`.
maxlag : integer, optional
The maximum autocovariance to compute. Default is `order`-1. Can be
zero, in which case it returns the variance.
forward_autocovariances : boolean, optional
Whether or not to compute forward autocovariances
:math:`E(y_t y_{t+j}')`. Default is False, so that backward
autocovariances :math:`E(y_t y_{t-j}')` are returned.
Returns
-------
autocovariances : list
A list of the first `maxlag` autocovariance matrices. Each matrix is
shaped `k_endog` x `k_endog`.
Notes
-----
Computes
..math::
\Gamma(j) = E(y_t y_{t-j}')
for j = 1, ..., `maxlag`, unless `forward_autocovariances` is specified,
in which case it computes:
..math::
E(y_t y_{t+j}') = \Gamma(j)'
Coefficients are assumed to be provided from the VAR model:
.. math::
y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + \varepsilon_t
Autocovariances are calculated by solving the associated discrete Lyapunov
equation of the state space representation of the VAR process.
"""
from scipy import linalg
# Convert coefficients to a list of matrices, for use in
# `companion_matrix`; get dimensions
if type(coefficients) == list:
order = len(coefficients)
k_endog = coefficients[0].shape[0]
else:
k_endog, order = coefficients.shape
order //= k_endog
coefficients = [
coefficients[:k_endog, i*k_endog:(i+1)*k_endog]
for i in range(order)
]
if maxlag is None:
maxlag = order-1
# Start with VAR(p): w_{t+1} = phi_1 w_t + ... + phi_p w_{t-p+1} + u_{t+1}
# Then stack the VAR(p) into a VAR(1) in companion matrix form:
# z_{t+1} = F z_t + v_t
companion = companion_matrix(
[1] + [-coefficients[i] for i in range(order)]
).T
# Compute the error variance matrix for the stacked form: E v_t v_t'
selected_variance = np.zeros(companion.shape)
selected_variance[:k_endog, :k_endog] = error_variance
# Compute the unconditional variance of z_t: E z_t z_t'
stacked_cov = linalg.solve_discrete_lyapunov(companion, selected_variance)
# The first (block) row of the variance of z_t gives the first p-1
# autocovariances of w_t: \Gamma_i = E w_t w_t+i with \Gamma_0 = Var(w_t)
# Note: these are okay, checked against ArmaProcess
autocovariances = [
stacked_cov[:k_endog, i*k_endog:(i+1)*k_endog]
for i in range(min(order, maxlag+1))
]
for i in range(maxlag - (order-1)):
stacked_cov = np.dot(companion, stacked_cov)
autocovariances += [
stacked_cov[:k_endog, -k_endog:]
]
if forward_autocovariances:
for i in range(len(autocovariances)):
autocovariances[i] = autocovariances[i].T
return autocovariances
def _compute_multivariate_sample_pacf(endog, maxlag):
"""
Compute multivariate sample partial autocorrelations
Parameters
----------
endog : array_like
Sample data on which to compute sample autocovariances. Shaped
`nobs` x `k_endog`.
maxlag : integer
Maximum lag for which to calculate sample partial autocorrelations.
Returns
-------
sample_pacf : list
A list of the first `maxlag` sample partial autocorrelation matrices.
Each matrix is shaped `k_endog` x `k_endog`.
"""
sample_autocovariances = _compute_multivariate_sample_acovf(endog, maxlag)
return _compute_multivariate_pacf_from_autocovariances(
sample_autocovariances)
def _compute_multivariate_pacf_from_autocovariances(autocovariances,
order=None, k_endog=None):
"""
Compute multivariate partial autocorrelations from autocovariances.
Parameters
----------
autocovariances : list
Autocorrelations matrices. Should be a list of length `order` + 1,
where each element is an array sized `k_endog` x `k_endog`.
order : integer, optional
The order of the autoregression.
k_endog : integer, optional
The dimension of the data vector.
Returns
-------
pacf : list
List of first `order` multivariate partial autocorrelations.
Notes
-----
Note that this computes multivariate partial autocorrelations.
Corresponds to the inverse of Lemma 2.1 in Ansley and Kohn (1986). See
`unconstrain_stationary_multivariate` for more details.
Notes
-----
Computes sample partial autocorrelations if sample autocovariances are
given.
"""
from scipy import linalg
if order is None:
order = len(autocovariances)-1
if k_endog is None:
k_endog = autocovariances[0].shape[0]
# Now apply the Ansley and Kohn (1986) algorithm, except that instead of
# calculating phi_{s+1, s+1} = L_s P_{s+1} {L_s^*}^{-1} (which requires
# the partial autocorrelation P_{s+1} which is what we're trying to
# calculate here), we calculate it as in Ansley and Newbold (1979), using
# the autocovariances \Gamma_s and the forwards and backwards residual
# variances \Sigma_s, \Sigma_s^*:
# phi_{s+1, s+1} = [ \Gamma_{s+1}' - \phi_{s,1} \Gamma_s' - ... -
# \phi_{s,s} \Gamma_1' ] {\Sigma_s^*}^{-1}
# Forward and backward variances
forward_variances = [] # \Sigma_s
backward_variances = [] # \Sigma_s^*, s = 0, ..., p
# \phi_{s,k}, s = 1, ..., p
# k = 1, ..., s+1
forwards = []
# \phi_{s,k}^*
backwards = []
forward_factors = [] # L_s
backward_factors = [] # L_s^*, s = 0, ..., p
# Ultimately we want to construct the partial autocorrelation matrices
# Note that this is "1-indexed" in the sense that it stores P_1, ... P_p
# rather than starting with P_0.
partial_autocorrelations = []
# We fill in the entries of phi_{s,k} as follows:
# [1,1]
# [2,2], [2,1]
# [3,3], [3,1], [3,2]
# ...
# [p,p], [p,1], ..., [p,p-1]
# the last row, correctly ordered, should be the same as the coefficient
# matrices provided in the argument `constrained`
for s in range(order): # s = 0, ..., p-1
prev_forwards = list(forwards)
prev_backwards = list(backwards)
forwards = []
backwards = []
# Create forward and backwards variances Sigma_s, Sigma*_s
forward_variance = autocovariances[0].copy()
backward_variance = autocovariances[0].T.copy()
for k in range(s):
forward_variance -= np.dot(prev_forwards[k],
autocovariances[k+1])
backward_variance -= np.dot(prev_backwards[k],
autocovariances[k+1].T)
forward_variances.append(forward_variance)
backward_variances.append(backward_variance)
# Cholesky factors
forward_factors.append(
linalg.cholesky(forward_variances[s], lower=True)
)
backward_factors.append(
linalg.cholesky(backward_variances[s], lower=True)
)
# Create the intermediate sum term
if s == 0:
# phi_11 = \Gamma_1' \Gamma_0^{-1}
# phi_11 \Gamma_0 = \Gamma_1'
# \Gamma_0 phi_11' = \Gamma_1
forwards.append(linalg.cho_solve(
(forward_factors[0], True), autocovariances[1]).T)
# backwards.append(forwards[-1])
# phi_11_star = \Gamma_1 \Gamma_0^{-1}
# phi_11_star \Gamma_0 = \Gamma_1
# \Gamma_0 phi_11_star' = \Gamma_1'
backwards.append(linalg.cho_solve(
(backward_factors[0], True), autocovariances[1].T).T)
else:
# G := \Gamma_{s+1}' -
# \phi_{s,1} \Gamma_s' - .. - \phi_{s,s} \Gamma_1'
tmp_sum = autocovariances[s+1].T.copy()
for k in range(s):
tmp_sum -= np.dot(prev_forwards[k], autocovariances[s-k].T)
# Create the "last" (k = s+1) matrix
# Note: this is for k = s+1. However, below we then have to
# fill in for k = 1, ..., s in order.
# phi = G Sigma*^{-1}
# phi Sigma* = G
# Sigma*' phi' = G'
# Sigma* phi' = G'
# (because Sigma* is symmetric)
forwards.append(linalg.cho_solve(
(backward_factors[s], True), tmp_sum.T).T)
# phi = G' Sigma^{-1}
# phi Sigma = G'
# Sigma' phi' = G
# Sigma phi' = G
# (because Sigma is symmetric)
backwards.append(linalg.cho_solve(
(forward_factors[s], True), tmp_sum).T)
# Create the remaining k = 1, ..., s matrices,
# only has an effect if s >= 1
for k in range(s):
forwards.insert(k, prev_forwards[k] - np.dot(
forwards[-1], prev_backwards[s-(k+1)]))
backwards.insert(k, prev_backwards[k] - np.dot(
backwards[-1], prev_forwards[s-(k+1)]))
# Partial autocorrelation matrix: P_{s+1}
# P = L^{-1} phi L*
# L P = (phi L*)
partial_autocorrelations.append(linalg.solve_triangular(
forward_factors[s], np.dot(forwards[s], backward_factors[s]),
lower=True))
return partial_autocorrelations
def _compute_multivariate_pacf_from_coefficients(constrained, error_variance,
order=None, k_endog=None):
r"""
Transform matrices corresponding to a stationary (or invertible) process
to matrices with singular values less than one.
Parameters
----------
constrained : array or list
The coefficients matrices. If a list, should be a list of length
`order`, where each element is an array sized `k_endog` x `k_endog`. If
an array, should be the coefficient matrices horizontally concatenated
and sized `k_endog` x `k_endog * order`.
error_variance : array
The variance / covariance matrix of the error term. Should be sized
`k_endog` x `k_endog`.
order : integer, optional
The order of the autoregression.
k_endog : integer, optional
The dimension of the data vector.
Returns
-------
pacf : list
List of first `order` multivariate partial autocorrelations.
Notes
-----
Note that this computes multivariate partial autocorrelations.
Corresponds to the inverse of Lemma 2.1 in Ansley and Kohn (1986). See
`unconstrain_stationary_multivariate` for more details.
Notes
-----
Coefficients are assumed to be provided from the VAR model:
.. math::
y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + \varepsilon_t
"""
if type(constrained) == list:
order = len(constrained)
k_endog = constrained[0].shape[0]
else:
k_endog, order = constrained.shape
order //= k_endog
# Get autocovariances for the process; these are defined to be
# E z_t z_{t-j}'
# However, we want E z_t z_{t+j}' = (E z_t z_{t-j}')'
_acovf = _compute_multivariate_acovf_from_coefficients
autocovariances = [
autocovariance.T for autocovariance in
_acovf(constrained, error_variance, maxlag=order)]
return _compute_multivariate_pacf_from_autocovariances(autocovariances)
[docs]def unconstrain_stationary_multivariate(constrained, error_variance):
r"""
Transform constrained parameters used in likelihood evaluation
to unconstrained parameters used by the optimizer
Parameters
----------
constrained : array or list
Constrained parameters of, e.g., an autoregressive or moving average
component, to be transformed to arbitrary parameters used by the
optimizer. If a list, should be a list of length `order`, where each
element is an array sized `k_endog` x `k_endog`. If an array, should be
the coefficient matrices horizontally concatenated and sized
`k_endog` x `k_endog * order`.
error_variance : array
The variance / covariance matrix of the error term. Should be sized
`k_endog` x `k_endog`. This is used as input in the algorithm even if
is not transformed by it (when `transform_variance` is False).
Returns
-------
unconstrained : array
Unconstrained parameters used by the optimizer, to be transformed to
stationary coefficients of, e.g., an autoregressive or moving average
component. Will match the type of the passed `constrained`
variable (so if a list was passed, a list will be returned).
Notes
-----
Uses the list representation internally, even if an array is passed.
References
----------
.. [1] Ansley, Craig F., and Robert Kohn. 1986.
"A Note on Reparameterizing a Vector Autoregressive Moving Average Model
to Enforce Stationarity."
Journal of Statistical Computation and Simulation 24 (2): 99-106.
"""
from scipy import linalg
use_list = type(constrained) == list
if not use_list:
k_endog, order = constrained.shape
order //= k_endog
constrained = [
constrained[:k_endog, i*k_endog:(i+1)*k_endog]
for i in range(order)
]
else:
order = len(constrained)
k_endog = constrained[0].shape[0]
# Step 1: convert matrices from the space of stationary
# coefficient matrices to our "partial autocorrelation matrix" space
# (matrices with singular values less than one)
partial_autocorrelations = _compute_multivariate_pacf_from_coefficients(
constrained, error_variance, order, k_endog)
# Step 2: convert from arbitrary matrices to those with singular values
# less than one.
unconstrained = _unconstrain_sv_less_than_one(
partial_autocorrelations, order, k_endog)
if not use_list:
unconstrained = np.concatenate(unconstrained, axis=1)
return unconstrained, error_variance
[docs]def validate_matrix_shape(name, shape, nrows, ncols, nobs):
"""
Validate the shape of a possibly time-varying matrix, or raise an exception
Parameters
----------
name : str
The name of the matrix being validated (used in exception messages)
shape : array_like
The shape of the matrix to be validated. May be of size 2 or (if
the matrix is time-varying) 3.
nrows : int
The expected number of rows.
ncols : int
The expected number of columns.
nobs : int
The number of observations (used to validate the last dimension of a
time-varying matrix)
Raises
------
ValueError
If the matrix is not of the desired shape.
"""
ndim = len(shape)
# Enforce dimension
if ndim not in [2, 3]:
raise ValueError('Invalid value for %s matrix. Requires a'
' 2- or 3-dimensional array, got %d dimensions' %
(name, ndim))
# Enforce the shape of the matrix
if not shape[0] == nrows:
raise ValueError('Invalid dimensions for %s matrix: requires %d'
' rows, got %d' % (name, nrows, shape[0]))
if not shape[1] == ncols:
raise ValueError('Invalid dimensions for %s matrix: requires %d'
' columns, got %d' % (name, ncols, shape[1]))
# If we don't yet know `nobs`, don't allow time-varying arrays
if nobs is None and not (ndim == 2 or shape[-1] == 1):
raise ValueError('Invalid dimensions for %s matrix: time-varying'
' matrices cannot be given unless `nobs` is specified'
' (implicitly when a dataset is bound or else set'
' explicity)' % name)
# Enforce time-varying array size
if ndim == 3 and nobs is not None and not shape[-1] in [1, nobs]:
raise ValueError('Invalid dimensions for time-varying %s'
' matrix. Requires shape (*,*,%d), got %s' %
(name, nobs, str(shape)))
[docs]def validate_vector_shape(name, shape, nrows, nobs):
"""
Validate the shape of a possibly time-varying vector, or raise an exception
Parameters
----------
name : str
The name of the vector being validated (used in exception messages)
shape : array_like
The shape of the vector to be validated. May be of size 1 or (if
the vector is time-varying) 2.
nrows : int
The expected number of rows (elements of the vector).
nobs : int
The number of observations (used to validate the last dimension of a
time-varying vector)
Raises
------
ValueError
If the vector is not of the desired shape.
"""
ndim = len(shape)
# Enforce dimension
if ndim not in [1, 2]:
raise ValueError('Invalid value for %s vector. Requires a'
' 1- or 2-dimensional array, got %d dimensions' %
(name, ndim))
# Enforce the shape of the vector
if not shape[0] == nrows:
raise ValueError('Invalid dimensions for %s vector: requires %d'
' rows, got %d' % (name, nrows, shape[0]))
# If we don't yet know `nobs`, don't allow time-varying arrays
if nobs is None and not (ndim == 1 or shape[-1] == 1):
raise ValueError('Invalid dimensions for %s vector: time-varying'
' vectors cannot be given unless `nobs` is specified'
' (implicitly when a dataset is bound or else set'
' explicity)' % name)
# Enforce time-varying array size
if ndim == 2 and not shape[1] in [1, nobs]:
raise ValueError('Invalid dimensions for time-varying %s'
' vector. Requires shape (*,%d), got %s' %
(name, nobs, str(shape)))